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If a system of ordinary differential equations represents a property conserving system 
that can be expressed linearly (e.g., conservation of mass), it is then desirable that the 
numerical integration method used conserve the same quantity. It is shown that both 
linear multistep methods and Runge-Kutta methods are “conservative” and that 
Newton-type methods used to solve the implicit equations preserve the inherent con- 
servation of the numerical method. It is further shown that a method used by several 
authors is not conservative. 

I. PRELIMINARIES 

Consider a system of differential equations of the form 

dy/d.lc = f(x, Y>, Ybo) = To 2 (1) 

where y = (a ,..., J,)’ and f = (fi ,...,fs)r. Suppose that the solution satisfies 
one or more conservation laws of the form wry = M, where w = (wl ,..., wJT, 
is a vector of constant weights. (This is a linear invariant of the system.) Then, 
by differentiating, we get 

wTf(x, y) = 0. (2) 

For the remainder of the paper, we assume that (2) is valid not only for the solution, 
but for all (x, y). 

DEFINITION. Let (1) be a system of differential equations satisfying (2), and 
let {(x, , y”)}, n = 0, 1, 2,..., be a discrete numerical solution to (1) produced by 
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a given method. The method is said to be conservative with respect to a given weight 
vector w = (wl ,..., w~)~, if 

wTy” = M, n = 0, 1) 2 ,...) (3) 

where A4 is a constant. 
For example, if the yi represent the number densities of s chemical species and 

(2) holds with the wi = 1, then the chemical reaction would conserve the total 
number density, x:b, yi . 

The fact that many methods conserve linear invariants has several ramifications: 
(i) One can choose to integrate all the equations, or to eliminate one equation and 
integrate the remaining equations. The choice depends on the size of the system 
and whether or not the elimination of one equation destroys the sparsity of the 
system (or the Jacobian). (ii) The use of invariants to check the accuracy of 
integration is often misleading because all it usually checks for is roundoff error 
(and not truncation error). (iii) If the physical system satisfies a linear conservation 
law, then a numerical method that preserves the same law should be used, to 
eliminate one source of numerical error. 

In Section II, it is shown that any consistent linear multistep, hybrid, or Runge- 
Kutta method is conservative; one of the nonconservative methods is discussed in 
Section III. In Section IV, it is shown that the use of certain Newton-type methods 
used to solve implicit methods is also conservative if the method itself is conser- 
vative. 

II. CONSERVATIONFOR LINEAR MULTISTEP, RUNGE-KUTTA, AND HYBRID METHODS 

Consider a general linear multistep method [I], of degree k 

where y’l-j = (y;-j,..., yy-i)T and f +j = f (xnmi , y”-j) and h is the step size. We 
will show that if the conservation property is valid for preceding values of y, then 
the conservation property is also valid for y”. 

THEOREM 1. Zf w’y’ = M for 1 = n - 1, n - 2,..., n - k, and if(2) holds for 
all (x, y), then wTyn = M, where yn has been computed by a consistent linear 
multistep method of degree k. 



CONSERVATION PROPERTIES 

Proof. It follows from (4) that 

i. (I~~+w~Y~-~ = h k ple-jwTf +j. 

From (2), wrfz = 0 and by our hypothesis, wTyz = M for n 

k-l 

cQ,ll'Tyn + 2 orjM = 0. 
j=O 
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(5) 

k < I -C n; hence, 

(6) 

Any consistent linear multistep method satisfies Cj”=, aj = 0; hence, (6) implies 
wTyn = M. 

Consider a general m-stage Runge-Kutta method [l] 

yn = yn-1 + f ajKj, n = 1, 2,..., 
j=l 

where the Kj satisfy the system of equations 

Ki = hf(xn-l + qh, y”-l + f bj,Kz), 
l=l 

From (2) and (8), it follows that wTKj = 0, and thus, 

m 
wTyy” = wTyn-l + 1 ajwTKj, n 

j=l 

= ,,,Ty-1. 

Thus, we have shown 

ZZ 

j = l,..., m. (8) 

1, 2,..., 

(9) 

THEOREM 2. If wr~)‘“-l = M and (2) hoI& for all (x, y), then wTyTz = M for 
n > 1, where y* has been computed by an m-stage Runge-Kutta method. 

Theorems 1 and 2 are known [6], but are repeated here because the results are 
not widely known. 

Consider the hybrid method [4] of degree k 

C Orp-iyn-j = h 1 fik-jf”-’ f flk-vf ‘-“, 0 < V < 1. 
j=O j=O 

THEOREM 3. If wTyz = Mfor I = n - l,..., n - k, and if(2) holdsfor all (x, y), 
then wTyn = M, where yn has been computed by a consistent hybrid method. 

The proof follows the same lines as Theorem 1. 
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III. EXAMPLE OF A NONCONSERVATIVE METHOD 

In finite-rate chemical reaction calculations, the following system of s equations 
is encountered. 

dyildx = Pi@, Y) - ~iL(x, Y>, i = I,..., s, (10) 

where, as before, y = (yl ,..., y8)T and Pi(x, y) and L.&C, y), which are called 
production and loss functions, are given. Let us further suppose that (2) holds 
with w1 = ..a = W, = 1; that is, 

g1 Pi(X, Y) - YiUX, Y)l = 0. (11) 

The following method has been used by several authors (see [2, 31). Let 

(Yi”” - Jli”)/jl = pin - $+1&n, i = I,..., S, (12) 

where Pi” = Pi(X, , y”), Li” = L,(x, , JV”), and y’” = ()qln,..., JJ~~)~. Equation (12) 
can be rewritten as 

y;+1 = yin + h[Pin - yinLin] + hLi”[y,” - y;“]* (13) 

By (1 1), the method (12) is conservative if and only if 

i Lin(yin - Jf") = 0. (14) 
i=l 

Equation (14) does not, however, hold in general, and the method is not conser- 
vative. For example, for the system 

Yl’ = -Y1 3 (PI = 0, L1 = O), 

1’2’ = +Yl 3 (Pz = 4’1, L, = (9, 

the sum, in Eq. (14), is y;+l - yin. 
It should be noted that method (12), can be made “almost conservative” and 

in the limit conservative, if one applies (12) as a successive substitution process. 
That is, one evaluates Pi and Li using the latest available values for {y:“> and 
iterates (12) until convergence. The net effect of the successive substitution process 
is to apply the Euler implicit scheme directly to (10). The cost of the process is 
likely to be several times more expensive than using the Euler implicit method 
with modified Newton-Raphson iterations to solve the implicit equations [l]. 
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IV. THE EFFECT OF ITERATIVE METHODS ON CONSERVATION 

Many linear multistep and Runge-Kutta methods are implicit. Consequently, 
it would be useful if the iterative method, which is used to solve the nonlinear 
equations at each time step, would preserve the conservation property. 

DEFINITION. An iterative method for solving equations is said to preserve the 
conservation property if all iterates, y(p), p = 0, l,..., satisfy wTy(Y) = M, where 
w= = (WI )...) WJ. 

In the case of predictor-corrector schemes using successive substitution, it 
follows from the proof of Theorem 1 that if both the predictor and corrector are 
conservative, then successive substitutions will preserve the conservation property. 
Similarly, it follows from the proof of Theorem 2 that for implicit Runge-Kutta 
methods, successive substitutions preserve the conservation property. 

For stiff systems, Newton-type methods are usually used to solve the implicit 
equations at each step. In Theorem 4, we isolate a property of Newton-type 
methods which guarantees that the method preserves the conservation property. 
We then show that two common types of Newton methods, modified Newton 
and Broyden methods, preserve the conservation property for both linear multi- 
step methods and Runge-Kutta methods. 

THEOREM 4. Consider a system of s equations 

F(y) = 0 

and the Newton-type method 

(15) 

B, Sy'P) = -jqy'P'), p = 0, l,..., (16) 

for solving (15), where B, is the nonsingularpth iteration matrix, &y(P) = y(p+l) - y(p), 
and y(n) is the pth approximation to the solution of (15). Zf wT = (wl ,..., w,) is a 
cector of weights such that 

,Ty’Ol = M 9 (17) 
WV(y) = 0, for ally such that wTy = M, (18) 

and 
wTB, = XwT, p = 0. l,..., for some scalar nonzero A, (19) 

then .wTy(p) = M 9 p = 0, 1 ).... 

Proof. From (16) and (18) we have that wTBZ, Sy(P) = - wTF( y(p)) = 0. 
Therefore, from (19), it follows that hwT Sy’p’ = 0, or wTy(*+l) = wTy(@, and by 
induction, the theorem is proved. 
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Consider the linear multistep method (4) applied to the differential Eqs. (1). 
To obtain the y”, we must solve the nonlinear system of equations 

F(y) = J’ - h&&x, ) y) + f (af+jy- - hp,-jfn-‘) = 0, (20) 
i=l 

where we have assumed that c+ = 1. A “modified” Newton method for solving 
(20) can be written as 

[I - h,Bkfp(W, jw’)] 6y”* v = -F( y”*p), (21) 

where yn*p is the pth approximation to yn, 8yyn*n = yn*p+l - yn*p, and (S*J, g(p)) 
is any value of the independent and dependent variables (if we choose (x, , y”.“) 
we have the usual Newton method). 

We may simultaneously consider the semi-implicit Runge-Kutta method 

y” = ynel f 5 ajKn, n = 1, 2,..., 
j=l 

where IQ is defined as the solution of the equations 

Fj(Kj) GE K’ - hf xnel + cjh, y’+l + i biLKI 
( 1 

= 0, j 
l=l 

A Newton-type method for solving (23) can be written as 

[Z - hbjjfv\Z(P), jYP')] a@. P = ..-Fj(Ki.p) 

and we define a sequence of approximations to yn by 

Y n.p = yn-l + f ajKj.P 

i=l 

COROLLARY 1. Suppose wTynso = M. 

(22) 

1 ,..., m. (23) 

(24) 

(25) 

(a) rf the linear multistep method (4), with CQ = 1, is conservative (i.e., 
satisjies the hypotheses of Theorem 1) then all the modjied Newton iterates yn*p, 
p = 1,2,..., for the linear multistep method (21) satisfy wTyn*p = M. 

(b) Zf wTyn-l = A4, the semi-implicit Runge-Kutta method (22) and (23), is 
conservative and wTGo = 0, then all the modified Newton iterates yn*p, p = 1,2,... 
for the semi:implicit Runge-Kutta method (24) and (25), satisfy wTyn*P = M. 

ProoJ We will proceed by an induction on p, for each fixed n. For the linear 
multistep method, we are given that (17) is valid and from Theorem 1 and its proof, 
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we have that (18) holds. From (2) we have that wTfv(x, y) = 0 for all (x, y) and, 
therefore, wTII - I&f& 9)] = wT. Consequently, by Theorem 4, the corollary 
is proved for linear multistep methods. 

For semiimplicit Runge-Kutta methods, we can similarly show that ~~I0-p = 0. 
It then follows that wTyn.P = wTyn-l + x:, ajwTKj*P or wTyn.p = wTyn-l = M, 
and the corollary is proved. 

Remark. ynJ’ can always be chosen such that wTynso = M. For instance, 
choose ynmo = y”-l. Similarly, we can satisfy wTKjvo = 0 by choosing Kjm” to 
be the last set of Kj’s from the calculation of yn-l (or zero if n = 1). 

Broyden’s method [5] for solving (20) may be written as 

B, SY n*P = -F(y".P), 

where B, is a given approximation to the Jacobian of (20) and 

(26) 

B p+l = B, + ((8Fnsv - BP 8yn,D)(6ynJ’)T/II 8yyn*P 112), (27) 
@T".P = F(yn.~+l) - f'(y".P). w 

COROLLARY 2. Suppose wTyneo = M and wTBo = XwT for some nonzero A. 

(a) If the linear multistep method (4) satisfies the hypotheses of Theorem 1, 
then all Broyden iterates for the linear multistep method satisfy wTyn.p = M. 

(b) lfthe semi-implicit Runge-Kutta method (22) and (23) satisfies the hypoth- 
eses of Theorem 2, and wTKjvo = 0, h t en all Broyden iterates for the semiimplicit 
Runge-Kutta method satisfy wTyn*P = M. 

Proof. As in Corollary 1, we have that (17) and (18) are valid for the linear 
multistep method. We will now show that if wTBt, = hwT, then wTB,+, = XwT. 
This is equivalent to showing that wTGp = 0, where 

G, = [6F”sp - B, 6yn*p]. 

From (28), we may write 

wTGp = [wTF(y”.p+l) - wTF( y”,“) - wTBp 6yn.“] 

= [--hwT i3y-q = 0. 

Therefore, by induction and Theorem 4, Corollary 2 is proved for linear multistep 
methods. 

Proceeding as above, it can be shown that for the semi-implicit Runge-Kutta 
methods, the Broyden iterates for Kj satisfy w’Kj*p = 0. Therefore, as in 
Corollary 1, we have that wTyn~n = M. 
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Remark. The condition wTB,, = hwT can be satisfied if we choose, for example, 
B, = I - yf, for some y. 

Corollaries 1 and 2 can be extended to include secant methods for solving the 
nonlinear equations for both linear multistep and semi-implicit Runge-Kutta 
schemes. However, the extension of the corollaries to fully implicit Runge-Kutta 
schemes, (7) and (8), is more complex. Successive substitutions would preserve 
the conservation property but Newton- and Broyden-type methods preserve the 
conservation if either the implicit Runge-Kutta coefficients are chosen correctly, 
or the nonlinear equations are solved in the appropriate ways (as described below). 

For implicit Runge-Kutta schemes, Eq. (23) would have to be written as 
Fj(Kl,..., Km) = 0, a system of ms simultaneous nonlinear equations. If wTKiso = 0, 
j = l,..., m, then Newton (or Broyden) iterations lead to CL, wT@.Y = 0, which 
does not necessarily imply that z:, ajwTKj*p = 0 unless all the {aj> are equal. 
For example, for the method [4, p. 2441 

Y n+L = y” + (h/4)(K1 + K2), 

K’ = hf(x, , y” + (l/4) K1 - (l/4) KZ), 

K2 = hf(x, + (2/3) h, y’” + (l/4) K’ + (5/12) P), 

the use of the Newton or Broyden methods to solve the 2s equations for K1 and K2 
does not preserve the conservation property. 

However, if one uses a Gauss-Seidel-Newton (or Broyden or Secant) or a 
Jacobi-Newton (or Broyden or Secant) method [7] to solve Eq. (23), then the 
conservation property is preserved. The proof of this follows the same lines as 
Corollary 2. part (b). 
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